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Abstract

In this paper we develop a one-factor non-affine stochastic volatility option
pricing model where the dynamics of the underlying is endogenously determined
from micro-foundations. The interaction and herding of the agents trading the
underlying asset induce an amplification of the volatility of the asset over the
volatility of the fundamentals. Although the model is non-affine, a closed form
option pricing formula can still be derived by using a Gauss-Hermite series ex-
pansion methodology. The model is calibrated using S&P 500 index options
for the period 1996-2013. When its results are compared to some benchmark
models we find that the new non-affine one-factor model outperforms the affine
one-factor Heston model and is competitive, especially out-of-sample, with re-
spect to the affine two-factor double Heston model.
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1 Introduction

The Black and Scholes (1973) model for option pricing is a cornerstone of the mod-

ern financial theory. However, there is an extensive empirical literature that has

documented the biases of this classical model. The most striking of these biases is

known as the “volatility smile” and refers to the stylized fact that observed market

prices for out-of-the-money put prices and in-the-money call prices are higher than

the theoretical prices obtained by the Black-Scholes model. One popular approach for

taking into account the “volatility smile” is the use of exogenous stochastic volatility

models that allow for negative correlation between the stock return and its instanta-

neous variance (Heston, 1993). In this type of models one departs from the central

hypothesis of the Black-Scholes model concerning a constant level of the volatility, by

specifying exogenously a dynamics for the instantaneous variance of the financial asset

under study. The negative correlation between stock returns and the instantaneous

volatility captures another stylized fact, the so called “leverage effect”: decreases in

the stock price are associated with larger increases in volatility than similar increases

in the price (Black, 1976). Of course, exogenous stochastic volatility models can-

not explain the mechanisms responsible for inducing and amplifying the asset price

volatility. Moreover, a vast majority of these exogenous continuous time stochastic

volatility models are affine: the drift term and squared diffusion term in the stochastic

differential equation that describe the dynamics of the instantaneous variance are lin-

ear. The drift term captures, using a linear function, the fact that volatility oscillates

around a long-run level, in a mean-reverting fashion.

A large literature on affine stochastic volatility models has emerged focusing on

improving the path-breaking model of Heston (1993): models that allow for jumps

in the dynamics of the price of the financial asset, in order to account for large

moves such in the case of crashes (Bates, 1996; Bakshi, Cao and Chen, 1997), models
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allowing that the long-run variance is itself a stochastic process, modeled as a diffusion

process or as a discrete state Markov process (Bardgett, Gourier and Leippold, 2013;

Kaeck and Alexander, 2012), models that allow for jumps in the dynamics of the

variance (Eraker, 2004; Broadie, Chernov and Johannes, 2007), two-factor models

that generates stochastic correlation between returns and volatility (Christoffersen,

Heston and Jacobs, 2009), or three-factor models with jumps both in the dynamics

of the underlying and of the volatility (Andersen, Fusari and Todorov, 2015).

The results of a series of empirical studies such as Pan (2002), Jones (2003), Duan

and Yeh (2010) suggest that there still is a need for improving affine stochastic volatil-

ity models. Further support for non-affine stochastic volatility models is provided by

Kaeck and Alexander (2012) which present comprehensive empirical results regard-

ing the option pricing performance of affine and non-affine continuous time stochastic

volatility models. The authors consider an exogenous non-affine constant elasticity

of volatility (CEV)-type stochastic volatility model augmented by jumps in both the

price and variance process and by a stochastic long-run variance level. They find out

that non-affine diffusion models clearly out-perform their affine counterparts both

in-sample and out-of-sample. Moreover, they point out that the inclusion of jumps in

the model is less important than allowing for non-affine dynamics. Similarly Drimus

(2012) shows that the Heston related non-affine stochastic 3/2 model gives prices of

options on realized variance which allow upward sloping implied volatility of variance

smiles in contrast to the affine Heston model.

The purpose of the paper is to develop an endogenous and non-affine stochastic

volatility model where the volatility induced by fundamentals is amplified due to the

interaction and herding of the agents involved in trading a financial asset. At the same

time, we show how one can price European options in the context of the model using

the closed form formula based on the Gauss-Hermite series expansion methodology
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(Necula, Drimus and Farkas, 2013). We estimate the parameters of the model by a

combination of non-linear optimization techniques using S&P 500 index options, and

conduct a study about the performance of the new option pricing model.

The paper is structured in six sections. In the second section we discuss the micro-

foundations and derive the dynamics equation of the asset price in the continuous time

limit. In the third section we outline a method for computing option prices in the

context of the model. The fourth section presents the data set and the estimation

methodology. In the fifth section we report the result of the estimation and of the

empirical investigation of the option pricing performance of the model. The final

section concludes. The appendix collects the proofs of the propositions.

2 The dynamics of the underlying

We consider a financial market model with N economic agents trading a single risky

asset. For now, we assume that time is discrete denoted by tk with tk+1 − tk = 1/n

and, later, we will determine the continuous time limit (n → ∞). As usual in the

literature on micro-foundations of diffusions models for asset prices (Follmer and

Schweizer, 1993; Follmer, Horst and Kirman, 2005; Horst, 2005), we do not formulate

an individual optimization problem, but, specify directly the excess demand function

for the risky asset of each individual agent. More specifically, the excess demand

function of an agent a at time tk+1,
aenk+1(p) is given by

aenk+1(p) =
aŜnk+1 − p

Snk
+ aεnk (1)

where Snk is the current level of the asset price, aŜnk+1 is the reference price level for

agent a, aεnk is a random variable, independent and identically distributed among

agents with zero mean and variance Nσ2/n where σ is a constant. Therefore, we
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assume that the excess demand function consists of two terms: the relative deviation

of the proposed price from a reference price level, dependent of the agent, and an

exogenous random shock.

We assume that the economy is populated with two types of agents, which differ

in their reference price rules. Type 1 agents set the reference price according to the

equation:

1Ŝnk+1 = Snk + Snkµ
n
k

1

n
(2)

where µnk is the annualized expected return of the asset price, at time tk. Type

1 agents are “rational” since they set the reference price such as the relative price

change equals the expected return, (1Ŝnk+1 − Snk )/Snk = µnk/n. On the other hand,

type 2 agents are “irrational” in that they overreact to every move in asset price that

deviates from the expected return. Denoting by γ ∈ (0, 1) the overreaction parameter,

the expected change for a type 2 agent is assumed to be

2Ŝnk+1 − Snk
Snk

= µnk
1

n
+ γ

(
p− Snk
Snk

− µnk
1

n

)
.

Therefore, type 2 agents take the proposed price p as a signal and employ it in

determining the reference price level:

2Ŝnk+1 = Snk + Snk (1− γ)µnk
1

n
+ γ(p− Snk ) (3)

The market price of the asset at time tk+1, S
n
k+1, follows from the equilibrium

condition that the total excess demand is zero,
∑N

a=1
aenk+1(S

n
k+1) = 0. Denoting by

X n
k ∈ (0, 1) the proportion of type 2 agents at time tk, it follows that the asset price

5



follows the following stochastic difference equation:

Snk+1 − Snk = µnkS
n
k

1

n
+

σ

1− γX n
k

Snk
εnk+1√
n

(4)

where

σ√
n
εnk+1 :=

1

N

N∑
a=1

aεnk+1,

E(εnk+1) = 0, VAR(εnk+1) = 1.

Consider for now that the fraction of type 2 agents is constant, X n
k = X . The

continuous time limit of equation (4) is given by

dSt
St

= µtdt+ σ
1

1− γX
dWt (5)

where Wt is a Brownian motion.

Therefore, under the assumption of constant proportion of “irrational” agents, one

obtains a constant volatility model. The existence of “irrational” agents induces a

multiplication effect of fundamental volatility. More precisely, the asset price volatility

is equal to the fundamental volatility σ multiplied by 1/(1−γX ). Stochastic volatility

in this model can result from the existence of a stochastic fundamental volatility

and/or from a stochastic multiplication factor. It what follows, we assume that

the fundamental volatility is constant and that the fraction of “irrational” agents is

stochastic and described by a herding mechanism.

We employ a herding process similar to Alfarano, Lux and Wagner (2008). More

specifically, we assume that the fraction of type 2 agents follows a birth-death process

6



with the following transition probabilities:

P

(
X n
k+1 = X +

1

N

∣∣∣∣ X n
k = X

)
= N2(1−X )

(
ba

1

N
+
c2

2
X
)

1

n
+ o

(
1

n

)
P

(
X n
k+1 = X − 1

N

∣∣∣∣ X n
k = X

)
= N2X

(
b(1− a)

1

N
+
c2

2
(1−X )

)
1

n
+ o

(
1

n

) (6)

where a ∈ (0, 1), b, c > 0 are constants.

These transition rates have a straightforward interpretation. At a given moment,

there are N(1−X ) type 1 agents. The rate that each of these agents can turn into a

type 2 agent has two components: an individual component (ba) that is independent

of the number of type 2 agents and a herding component
(
c2

2
NX

)
depending of the

number of type 2 agents that quantifies the effect of mass pressure. Therefore, the

transition rate of a “birth” event (the transformation of a type 1 agent into a type

2 agent) is N(1 − X )
(
ba+ c2

2
NX

)
. Similarly, one can argue that the transition

rate of a “death” event (the transformation of a type 2 agent into a type 1 agent) is

NX
(
b(1− a) + c2

2
N(1−X )

)
. Note that we assume an asymmetry in the individual

components of the two transition rates. If one imposes the constraint a = 0.5, one

obtains the same herding mechanism as in Alfarano, Lux and Wagner (2008).

Proposition 1. The continuous time limit of the asset price dynamics, under the

assumption that N is large, is given by


dSt
St

= µtdt+
σ

1− γXt
dW S

t

dXt = b(a−Xt)dt+ c
√
Xt(1−Xt)dWX

t

(7)

where W S
t and WX

t are correlated Brownian motions with dW S
t dW

X
t = ρdt.

Proof. see the Appendix.

It turns out that one obtains in the continuous time limit a non-affine stochastic
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volatility model with the dynamics of the latent variable, Xt, described by a Jacobi

diffusion process.

3 Option pricing

In contrast to a complete market set up such as in the case of the Black and Scholes

(1973) model, the existence of a stochastic latent variable in the present model makes

the market incomplete. Therefore, the state-price density is not unique and in order

to pricing derivatives one has to impose some risk premium assumptions and define

the risk neutral measure as the equivalent martingale measure associated to the pos-

tulated state-price density. We assume that the relationship between the risk neutral

measure (Q) and the real world measure (P ) is given by

dW S,Q
t = dW S,P

t + ηS
σ

1− γXt
dt and

dWX ,Q
t = dWX ,P

t + ηX

√
Xt√

1−Xt
dt,

with the parameters ηS and ηX quantifying the risk premiums associated to the two

diffusive sources of risk. Consequently, under the risk neutral measure, the dynamics

of the underlying is described by:


dSt
St

= (r − q)dt+ σ
1

1− γXt
dW S,Q

t

dXt = bQ(aQ −Xt)dt+ c
√
Xt(1−Xt)dWX ,Q

t

(8)

with dW S,Q
t dWX ,Q

t = ρdt, bQ = b + ηX c, a
Q = b

bQ
a and the risk-free rate r and the

dividend yield q are assumed constant for simplicity.

Since the model is non-affine it is impossible to obtain in closed form the char-

acteristic function of the risk neutral distribution of the log returns and to compute
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option prices by the method of Inverse Fourier Transform. However, one can compute

the cumulants of this distribution, as shown in the next proposition.

Proposition 2. The cumulants κj(τ,X ), j ≥ 1 of the conditional distribution

lnSt+τ − lnSt | Xt = X are given by

κ1(τ,X ) =

(
(r − q)− 1

2
σ2

)
τ + κ̃1(τ,X )

κ2(τ,X ) = σ2τ + κ̃2(τ,X ) (9)

κj(τ,X ) = κ̃j(τ,X ), j ≥ 3,

where κ̃1(τ,X ) = f1(τ,X ),

κ̃j(τ,X ) = fj(τ,X )−
j−1∑
l=1

(
j − 1

l − 1

)
κ̃l(τ,X )fj−l(τ,X ), j ≥ 2

and the functions

fj(τ,X ) =
∞∑
m=0

fj,m(τ)Pm(X ) (10)

with f0,0(τ) = 1, f0,m(τ) = 0, m > 0, Pm(·) is the m-th Jacobi polynomial on the

interval (0, 1). The functions fj,m(τ) solve the following system of ordinary differential

equations (ODE):

ḟj,m = −λmfj,m + j
∞∑
p=0

gmpfj−1,p + j(j − 1)
∞∑
p=0

hmpfj−2,p (11)
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with λm = bQm+ c2

2
m(m− 1), gmp and hmp are given by

gmp = −σ
2

2

∫ 1

0

(
1

(1− γx)2
− 1

)
Pm(x)Pp(x)n(x; aQ, bQ, c)dx

+ ρσc

∫ 1

0

√
x(1− x)

1− γx
Pm(x)P ′p(x)n(x; aQ, bQ, c)dx

hmp =
σ2

2

∫ 1

0

(
1

(1− γx)2
− 1

)
Pm(x)Pp(x)n(x; aQ, bQ, c)dx

and n(x; aQ, bQ, c) is the probability distribution function of a Beta distribution with

parameters α = 2bQ

c2
aQ and β = 2bQ

c2
(1− aQ).

Proof. see the Appendix.

In order to implement the results in the previous proposition one has to truncate

the expansion of fj(τ,X ) in equation (10) after a finite number of terms. From our

various experiments it turns out that using the first 40 terms is, in general, enough to

ensure the convergence of the expansion of the function on Jacobi polynomials. After

deciding the truncation threshold, one can easily compute recursively the functions

fj,m(τ) since the (truncated) system of ODEs in equation (11) has an explicit solution.

Let us suppose we want to determine the theoretical price at time t of a Euro-

pean call option with maturity t + τ using the model in this paper. In the begin-

ning, we compute the first 40 cumulants of the risk-neutral conditional distribution

lnSt+τ − lnSt | Xt = X using Proposition 1. Next, we approximate the probabil-

ity distribution function using the type C Gram-Charlier series expansion (C-GCSE)

truncated after 20 terms by computing the expansion coefficients of the C-GCSE from

the first 40 moments/cumulants using the method in Rompolis and Tzavalis (2007).

In contrast with the classical type A Gram-Charlier expansion that is employed in

the literature (e.g. Jondeau and Rockinger, 2001), the type C expansion guarantees

that the values of the risk neutral density will be always positive. On the downside,
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there is no closed form formula for option prices when approximating the risk neutral

probability distribution function with a C-GCSE.

Finally, we employ the general closed form option pricing formula obtained in Nec-

ula, Drimus and Farkas (2013). This method for option pricing is based on the fact

that a probability density can be represented as a Gauss-Hermite series expansion

(GHSE). More specifically, let us denote by pL(x; τ, s,X ) the C-GCSE approxima-

tion of the probability distribution function of lnSt+τ − lnSt | Xt = X obtained by

employing the first L cumulants. Then, the GHSE approximation of pL(x; τ, s,X ) is

given by:

pL(x; τ,X ) =
1√

κ2(τ,X )
z

(
x− κ1(τ,X )√

κ2(τ,X )

)
∞∑
n=0

an(τ,X )Hn

(
x− κ1(τ,X )√

κ2(τ,X )

)
(12)

where Hn(x) denotes the nth-order “physicists” Hermite polynomial and z(x) is the

standard Gaussian density. Using the orthogonality condition of the “physicists”

Hermite polynomials, it follows that the Gauss-Hermite expansion coefficients can be

computed as:

an(τ,X ) =

√
π

2n−1n!

∫ ∞
−∞

z

(
x− κ1(τ,X )√

κ2(τ,X )

)
Hn

(
x− κ1(τ,X )√

κ2(τ,X )

)
pL(x; τ,X )dx (13)

The Gauss-Hermite series expansion is an attractive alternative for approximating

the risk-neutral density due to its improved convergence for heavy tailed distributions

and because it allows for a closed form formula for pricing European options as shown

in Necula, Drimus and Farkas (2013). More specifically, the price of at time t of a

European call option with strike price K and maturity t+ τ is given by:

c(St, K, τ,Xt) = Ste
−qτΠ1(τ, St,Xt)−Ke−rτΠ2(τ, St,Xt) (14)
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with

Π1(τ, St,Xt) = exp

(
κ1(τ,X )− (r − q)τ +

κ2(τ,X )

2

) ∞∑
n=0

an(τ,Xt)In(τ, St,Xt) and

Π2(τ, St,Xt) =
∞∑
n=0

an(τ,Xt)Jn(τ, St,Xt)

where In(τ, St,Xt) and Jn(τ, St,Xt) satisfy simple recursion equations that are de-

scribed in Necula, Drimus and Farkas (2013).

When truncating the GHSE one has to make sure that the obtained approxima-

tion is a proper risk-neutral density, such that it is positive, has unit mass and the

martingale restriction is observed. Since the truncation is done after a large number of

terms (20 or 30) these restrictions are naturally obtained given the good convergence

properties of the GHSE with the expansion coefficients computed from equation (13).

However, to make sure the restrictions are valid, a second step was applied in the em-

pirical study and consisted in obtaining the GH expansion coefficients by minimizing

the sum the squared differences between the values, in an appropriate range, of the

GHSE approximation and of the ”real” density computed using C-GCSE and impos-

ing the required constraints. This constrained optimization is quite efficient since the

GHSE approximation and the constrains are linear in the expansion coefficients.

The performance of the Herding model is assessed empirically by comparison

to benchmark models. We employ the well known and frequently used affine one-

factor Heston model as well as the two-factor double Heston model proposed by

Christoffersen, Heston and Jacobs (2009). For details about the benchmark models

the reader is referred to the appendix.
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4 Data and estimation methodology

For the empirical performance analysis we employ the historical series of the daily

close price of S&P 500 out-of-the-money (OTM) options for the period January 1996

- December 2013. We use S&P 500 index options because they have the highest

trading volume of all European style options, because they are frequent applied in

similar studies and because of the subsequent availability of data. We derive the

respective empirical in-the-money (ITM) prices by the put-call parity. The daily

quoted mid-prices are sourced from the Option Metrics IVY Database.

Since the optimization of the proposed model is computationally intensive we ap-

ply the analysis on each Wednesday and consecutive Thursday for each week between

January 1996 and December 2013. The database likewise allows to source the annu-

alized dividend yield and the zero-coupon interest rate curve, matching the date and

maturity of the respective options.

Short term options exhibit a stronger volatility smile and consequently it is more

challenging to fit a proposed model to their prices (e.g. Bakshi, Cao and Chen, 1997).

Accordingly we focus our empirical study on short term options defined as options

with up to 3 months to maturity. Following Bakshi, Cao and Chen (1997), on the low

end of the maturity we take only into account options with a maturity of at least one

week to prevent liquidity related biases. Other commonly applied exclusion filters are

used (e.g. Bakshi, Cao and Chen, 1997; Bardgett, Gourier and Leippold, 2013). We

only include options which exhibit a strictly positive bid price, a positive and finite

moneyness and fulfill the no-arbitrage condition:

Call > max(0, Se−qτ −Ke−rfτ ), Put > max(0, Ke−rfτ − Se−qτ ) (15)

After applying the exclusion filters, the sample consists of 268,798 short term options.
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Table 1 presents a description of the option sample used for the empirical study. The

Table 1: Average implied volatility and volume of sample

Months-to-Expiration

Between 1
Week and

1 Month

Between 1
and 2

Months

Between 2
and 3

Months

Moneyness Average of
Market IV

Number of
Options

Average of
Market IV

Number of
Options

Average of
Market IV

Number of
Options

Total
Number of

Options

< 0.94 0.3141 12552 0.2972 37619 0.2869 27968 78139
0.94 ≤, < 0.97 0.1797 6671 0.1797 11476 0.1902 6407 24554
0.97 ≤, < 1 0.1656 7540 0.175 12477 0.1869 7144 27161
1 ≤, < 1.03 0.1651 7329 0.1751 12388 0.1864 7105 26822
1.03 ≤, < 1.06 0.1705 6679 0.1764 11068 0.1881 6230 23977
≥ 1.06 0.2924 15199 0.2845 42342 0.2788 30604 88145
Total Number
of Options

55970 127370 85458 268798

The table shows the average Black Scholes implied volatility per maturity band and moneyness band including
the number of options in the sample. The moneyness is the ratio of the spot and strike or the strike and spot
depending on ITM/OTM and Put/Call characteristic of the respective option. The maturity is measured in
trading days.

summary of the average implied volatilities shows the expected volatility smiles.

To fit each model to the empirical options we employ a combination of differential

evolution (DE) and non-linear least squares optimization. Searching the best input

parameters we have come to the conclusion that a combination of the two algorithms

performs often significantly better than if only one is chosen. The applied DE is

implemented in the swarmOps package for Matlab available online∗. The DE im-

plementation in the swarmOps package is the basic variant developed by Storn and

Price (1997) applying darwinian evolution techniques such as inheritance, mutation,

recombination, crossover and selection.

The DE is a direct stochastic search algorithm, aiming to find the global optimum

and capable of running in parallel. It essentially initiates a predefined amount of ran-

dom parameter vectors which are updated until convergence to the global minimum.

In more detail, a sample of predefined size, typically more than three, of random

parameter vectors is built, covering the parameter space. These candidate solutions

∗http://www.hvass-labs.org/projects/swarmops/matlab/
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are often uniformly distributed. For each of these candidate vectors the following

steps are performed: First, three vectors are randomly chosen from amongst the can-

didate vectors. From these, the weighted difference of two vectors is added to the

third vector to yield a mutated vector. The third vector is called target vector. The

weight of the difference or rather the amplitude is chosen by the user from [0,2]. Then

the mutated vector and the respective target vector are crossed over to result in the

trial vector. The method of crossover is basically choosing for each value in the trial

vector either the value of the mutated vector or the target vector depending on the

level of random uniform number and a predefined threshold Storn and Price (1997) .

The crossover assures that the new trial vector differs from the initial target vector

in a minimum amount of components. If the trial vector yields a lower cost than the

target vector the later is replaced by the trial vector. This step is the selection step

and the cost function can be a fitness or objective function. After going through all

candidate vectors the remaining target- and trial vectors build the new sample for

the next generation of updates.

One of the main difference to traditional Evolution algorithms is that the randomly

chosen population vectors perturb an existing vector within the population instead of

applying a chosen probability distribution function for the evolution of vectors Storn

and Price (1997).

We use the resulting global optimum parameters as input in the more classic non-

linear least squares optimization algorithm, implemented in Matlab. In consideration

of the complexity of the herding model function we apply the multistart version of

the trust region reflective algorithm.
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5 Empirical results

The combination of optimization algorithms is applied to minimize a fitness function

given by the square root of the average of the squared difference between the Black

Scholes implied volatility on the observed option premium and the Black Scholes

implied volatility on the model premium. The objective function is thus:

fitnesst :=

√∑nt

i=1(IVi − ÎV i(at, bt, ct, γt, σt, ρt, χt))2

nt
(16)

nt being the number of options on day t to which the structural parameters are fitted

and IV, ÎV are the Black Scholes implied volatilities for the observed and theoretical

option price respectively.

Focusing in the objective function on Black Scholes implied volatilities, instead of

option prices, improves the comparability between options of different strike prices

and maturities (e.g. Andersen, Fusari and Todorov, 2015). By this methodology one

finds a set of implied structural parameters for each day in the sample. To compute

out of sample estimates we employ the parameters estimated on each Wednesday

from 1996 - 2013 on the market data of the following Thursday. This procedure is

repeated equally for the benchmark models.

Table 2 reports the descriptive statistics of the daily implied parameters estimated

using the above methodology for the one-factor models employed in the analysis.

Table 2: Average of estimated daily parameters for short term options

aQ bQ c γ χ σ ρ θ κ v

Herding Model Average 0.4 2.71 1.28 0.95 0.64 0.07 -0.8
Stdev 0.19 0.7 0.3 0.02 0.14 0.04 0.11
Skew -0.47 0.15 1.22 -1.16 -0.39 1.26 1.02

Heston Model Average 0.05 -0.89 0.94 4.96 0.54
Stdev 0.03 0.13 3.9 4.91 0.25
Skew 3.39 1.51 6.41 1.8 0.47

Average, standard deviation and skew of the parameters for the Herding and Heston model on the
whole sample of daily sort term options from 1996-2013.
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To assess the relative model misspecification we compare the Black-Scholes volatil-

ities implied by the option prices of the Herding model, its benchmarks and the market

implied volatility. The following graph shows the average implied volatilities over the

whole sample. On the whole range of moneyness, above and below 1.5 and 0.5 re-
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Figure 1: Comparison between Model- and Market implied Volatilities on the Full
Range of Moneyness

spectively, the Heston model implied volatilities tend to be higher than those given

by the Herding model, the double Heston model and the market prices.

The Herding implied volatility is on average closer to the market implied volatility.

In between a moneyness of 0.9 and 1.1 the fit of all three models seems agreeable, as

seen in figure 2. Focusing on the most recent year, 2013, within a moneyness from

0.9 to 1.1, the order is similar: the Heston model implied volatilities are in tendency

higher than those of the other models. On the other hand, the double Heston models

volatility is closer to the market in this specific year as can be seen in figure 3. Overall

all models depict the expected U shape of the implied volatilities and we cannot find

any indication for a model misspecification.

The in- and out of sample performance analysis is done for all three models and

the average fitness per year is reported.
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Moneyness of 0.9-1.1, in 2013 only.
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The average in-sample fitness the Herding model in comparison to the Heston

model is lower in 83% of the cases but with respect to the double Heston model in

only one year.

Table 3: Comparison of fitness by Heston model and double He-
ston model vs Herding model with In-Sample Data

Year Average of
Heston Squared

Error

Average of
double Heston
Squared Error

Average of
Herding

Squared Error

1996 0.025 0.011 0.043
1997 0.033 0.021 0.025
1998 0.052 0.029 0.027
1999 0.047 0.021 0.05
2000 0.041 0.021 0.038
2001 0.031 0.02 0.03
2002 0.036 0.017 0.041
2003 0.041 0.012 0.036
2004 0.04 0.013 0.029
2005 0.044 0.016 0.027
2006 0.043 0.016 0.04
2007 0.041 0.015 0.026
2008 0.042 0.015 0.033
2009 0.082 0.028 0.036
2010 0.064 0.021 0.031
2011 0.078 0.023 0.027
2012 0.055 0.016 0.032
2013 0.05 0.013 0.023

Average fitness of the short term options in the sample per
year for all models. The fitness is calculated in-sample.

Fitting the models to daily short term option prices the Herding model is around

1.5 times as accurate as the Heston model and around half as accurate as the double

Heston model.

Nonetheless, the outperformance by the Herding model of the Heston model could

be related to the fact that the Herding model has more parameters. We thus enhance

our assessment by an out-of-sample analysis. Using different data than the dataset

the model was fitted to reduces the risk of the results being due to the amount of

parameters as overfitting is likely to occur if the former was the case.

Like the in-sample comparison the Herding model outperforms the Heston model

and is less accurate than the double Heston model. In general the difference between
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Table 4: Comparison of fitness by Heston model and double He-
ston model vs Herding model, with Out-of-Sample Data

Year Heston - Short
Term Oos

double Heston
Short Term Oos

Herding Short
Term Oos

1996 0.03 0.025 0.049
1997 0.035 0.035 0.032
1998 0.057 0.039 0.032
1999 0.052 0.033 0.054
2000 0.048 0.035 0.044
2001 0.037 0.035 0.034
2002 0.042 0.034 0.046
2003 0.042 0.024 0.037
2004 0.043 0.023 0.035
2005 0.046 0.026 0.028
2006 0.046 0.035 0.033
2007 0.043 0.026 0.033
2008 0.04 0.031 0.035
2009 0.082 0.037 0.032
2010 0.067 0.033 0.036
2011 0.085 0.034 0.04
2012 0.056 0.02 0.039
2013 0.05 0.016 0.025

Average fitness of the short term options per year for all mod-
els. The fitness is calculated out-of-sample.

the Herding and the benchmark models is reduced when applied to out of sample data.

Fitting to short term options the Herding model is around 1.3 times as accurate as the

Heston and 0.8 times as accurate as the double Heston model. The Herding model is

again more accurate than the Heston model in 83% of the cases and outperforms the

double Heston model in 28% of the tested years.

Next we focus on analyzing the performance of the models from the perspective

of the number of days in a year that each model performs best out-of-sample. The

Herding model provides the most accurate prices in 45%, the double Heston model

in 50% and the Heston model in 5% of the cases. Table 5 shows in detail the share

of best performing daily out-of-sample analysis for each year in the sample.

In eight out of the 18 years in the sample, the Herding model returns the most

accurate estimates for the majority of the days in those years. The double Heston

model is likewise the most accurate model for the majority of days during another
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Table 5: Daily Share of Best Performing Model-
Out-of-sample.

Year Herding Heston double
Heston

1996 0.45 0.1 0.45
1997 0.43 0.05 0.53
1998 0.71 0.1 0.2
1999 0.65 0.08 0.27
2000 0.62 0.04 0.34
2001 0.53 0.14 0.33
2002 0.44 0.14 0.42
2003 0.24 0.04 0.72
2004 0.3 0.02 0.68
2005 0.46 0 0.54
2006 0.54 0.1 0.35
2007 0.44 0.03 0.53
2008 0.53 0.05 0.42
2009 0.56 0 0.44
2010 0.49 0.02 0.49
2011 0.37 0 0.63
2012 0.31 0 0.69
2013 0.18 0 0.82

The table shows for each model the percentage
of days per analysed year where the respective
model performed best. The analysis is out-of-
sample.

eight years. The Heston model is never outperforming the other two models from

the point of view of offering better estimates in the majority of days in a given year.

The results indicate that, from this perspective, the Herding model can compete with

the double Heston model since both are most accurate in the same number of cases.

On the other hand, the double Heston dominates the Herding model if the annual

average fitness is compared.

With regard to the possibility that the results are driven by a potentially changing

underlying sample structure we are investigating key characteristics of the underlying

short term options, shown in table 6 as daily averages per year.

The number of options analysed per day as well as the characteristics of the

options in the sample do not exhibit any systematic deviation or trend, potentially

biasing the derived results. We thus conclude that the results are entirely due to the
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Table 6: Characteristics of Short Term Options per Year

Row
Labels

Average of
Spot

Average of
Implied

Volatility

Average of
Share of Put

Options

Average of
Maturity

Average of
Strike

Daily Average
Number of

Options

1996 672.74 0.18 0.64 0.14 647.42 126
1997 876.33 0.24 0.66 0.14 832.26 162
1998 1090.43 0.28 0.68 0.13 1018.81 162
1999 1328.34 0.27 0.63 0.13 1250.58 159
2000 1422.46 0.24 0.53 0.14 1378.61 145
2001 1195.67 0.27 0.55 0.14 1164.23 140
2002 988.77 0.28 0.53 0.14 961.26 136
2003 968.35 0.24 0.62 0.13 920.02 136
2004 1131.15 0.18 0.64 0.13 1071.18 148
2005 1207.24 0.15 0.6 0.13 1162.11 165
2006 1316.72 0.15 0.63 0.14 1266.74 214
2007 1480.75 0.2 0.65 0.13 1407.21 307
2008 1289.6 0.26 0.54 0.14 1259.55 344
2009 956.98 0.35 0.65 0.14 870.72 508
2010 1140.27 0.28 0.69 0.14 1031.97 506
2011 1259.07 0.3 0.7 0.14 1132.01 616
2012 1381.4 0.23 0.69 0.13 1269.14 724
2013 1595.53 0.18 0.7 0.13 1490.41 850

The table summarizes specific characteristics of short term options per year.

characteristics of the models.

6 Concluding remarks

We developed an endogenous, non-affine stochastic volatility model where the volatil-

ity induced by fundamentals is amplified due to the interaction and herding of the

agents involved in trading a financial asset. For pricing options in this model we em-

ployed the methodology based on Gauss-Hermite series expansion developed in Nec-

ula, Drimus and Farkas (2013). The option pricing performance of the new non-affine

one-factor model was tested in comparison to the classical affine one-factor model

proposed by Heston and the affine two-factor double Heston model. We employed

daily data on S&P 500 short term options for the period January 1996 - August 2013.

The parameters of all models were estimated by the same methodology consisting on

a combination of differential evolution and non-linear least squares optimization of
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the implied volatility mean squared error. The empirical analysis points out that the

herding model is more accurate than the affine one-factor model both in- as well as

out of sample and is comparable with the affine two-factor model in half of the cases

under scrutiny.
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Appendix

Proofs

Proof of Proposition 1. From (4) it follows that the equilibrium price at time tk+1 is

Snk+1 = Sn0 +
k∑
i=0

µni S
n
i

1

n
+

k∑
i=0

σ

1− γX n
i

Sni
εni+1√
n

(A.1)

Using the transition probabilities in equation (6) we have that:

E
(
X n
k+1 −X n

k | X n
k = X

)
= b(a−X )

1

n
+ o

(
1

n

)
(A.2)

E
(
(X n

k+1 −X n
k )2 | X n

k = X
)

=

(
c2X (1−X ) +

b (a(1−X ) + X (1− a))

N

)
1

n

+ o

(
1

n

)
and (A.3)

E
(
(X n

k+1 −X n
k )j | X n

k = X
)

= o

(
1

n

)
, j ≥ 3.

For N large, the term b(a(1−X )+X (1−a))
N

in equation (A.3) is negligible compared to

c2X (1−X ) and it follows that

X n
k+1 = X n

0 +
k∑
i=0

(X n
i+1−X n

i ) = X n
0 +

k∑
i=0

b(a−X n
i )

1

n
+

k∑
i=0

c
√
X n
i (1−X n

i )
ξni+1√
n

(A.4)

where

E
(
ξnk+1

)
= o

(
1

n

)
,

E
(
(ξnk+1)

2
)

= 1 + o

(
1

n

)
,

E
(
(ξnk+1)

j
)

= o

(
1

n

)
, j ≥ 3.
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We also assume that εni+1 in equation (A.1) and ξni+1 in equation (A.4) are cor-

related or more precisely that εni+1 = ρξni+1 +
√

1− ρ2ζni+1 with ρ ∈ (−1, 1) and ζni+1

i.i.d. Gaussian random variables with zero mean, unit variance and uncorrelated with

ξni+1.

If one denotes

W S,n
k :=

1√
n

k∑
i=0

εni+1,

WX ,n
k :=

1√
n

k∑
i=0

ξni+1,

one has that:


Snt = Sn0 +

∫ t

0

µnτS
n
τ dτ +

∫ t

0

σ

1− γX n
τ

Snτ dW
S,n
τ

X n
t = X n

0 +

∫ t

0

b(a−X n
τ )dτ +

∫ t

0

c
√
X n
τ (1−X n

τ )dWX ,n
τ

(A.5)

with Zn
t := Zn

[nt] where Z can be any of the random variables that appeared so far in

the demonstration.

The result follows from the fact that (W S,n
t ,WX ,n

t ) converges in distribution to a

bi-dimensional Brownian motion (W S
t ,W

X
t ) with dW S

t dW
X
t = ρdt.

Proof of Proposition 2. Let us denote by

ϕ(τ,X ;φ) := EQ (exp(iφ(lnSt+τ − lnSt)) | Xt = X )

the characteristic function of lnSt+τ − lnSt | Xt = X . One has that

ϕ(τ,X ;φ) = exp

(
iφ

(
(r − q)− σ2

2

)
τ − φ2

2
σ2τ

)
f(τ,X ;φ)

where the function f(τ,X ;φ) is the solution of the following partial differential equa-

27



tion (PDE):

∂f

∂τ
=

1

2
c2X (1−X )

∂2f

∂X 2
+

(
bQ(aQ −X ) + (iφ) ρσc

√
X (1−X )

1− γX

)
∂f

∂X

+

[
−iφ

2
σ2

(
1

(1− γx)2
− 1

)
+

(iφ)2

2
σ2

(
1

(1− γx)2
− 1

)]
f

(A.6)

with the condition f(0,X ;φ) = 1.

If one employs a formal series expansion for the function f(τ,X ;φ):

f(τ,X ;φ) =
∞∑
n=0

fn(τ,X )
(iφ)n

n!
(A.7)

by matching the powers of (iφ) it follows that f0(τ,X ) ≡ 1 and the functions fn(τ,X ),

n ≥ 1 are the solutions of the following system of PDEs:



∂fn
∂τ

=
1

2
c2X (1−X )

∂2fn
∂X 2

+ bQ(aQ −X )
∂fn
∂X

−nσ
2

2

(
1

(1− γX )2
− 1

)
fn−1 + nρσc

√
X (1−X )

1− γX
∂fn−1
∂X

+n(n− 1)
σ2

2

(
1

(1− γX )2
− 1

)
fn−2, n ≥ 1

(A.8)

with the conditions fn(0,X ) = 0, n ≥ 1.

The system of PDEs in equation (A.8) can be solved recursively. If one denotes

by

Φn(τ,X ) = −nσ
2

2

(
1

(1− γX )2
− 1

)
fn−1(τ,X )

+nρσc

√
X (1−X )

1− γX
∂fn−1
∂X

(τ,X )

+n(n− 1)
σ2

2

(
1

(1− γX )2
− 1

)
fn−2(τ,X )

(A.9)
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it follows that

fn(τ,X ) =

∫ τ

0

∫ 1

0

Φn(t, ε)G(X , τ ; ε, t)dεdt (A.10)

with the Green function G(X , τ ; ε, t) associated to the PDE

∂G

∂τ
=

1

2
c2X (1−X )

∂2G

∂X 2
+ bQ(aQ −X )

∂G

∂X

being given by (e.g. Polyanin, 2001):

G(X , τ ; ε, t) = n(ε; aQ, bQ, c)
∞∑
n=0

exp(−λn(τ − t))Pn(X )Pn(ε) (A.11)

where λn = bQn + c2

2
n(n − 1) are the eigenvalues of the second order differential

operator

1

2
c2X (1−X )

∂2

∂X 2
+ bQ(aQ −X )

∂

∂X

and Pn(·) the associated eigenfunctions. These eigenfunctions are the Jacobi poly-

nomials on the interval (0, 1). For more details one can consult Gouriéroux, Renault

and Valery (2007). The Jacobi polynomials are normalized such that

∫ 1

0

Pi(x)Pj(x)n(x; aQ, bQ, c)dx = δi,j

where n(x; aQ, bQ, c) is the probability distribution function of a Beta distribution

with parameters α = 2bQ

c2
aQ and β = 2bQ

c2
(1 − aQ). Inserting the expansion (10) into
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(A.10) and by matching the expansion coefficients one has that

fj,m(τ) = j
∞∑
p=0

gmp

∫ τ

0

e−λm(τ−t)fj−1,p(t)dt

+ j(j − 1)
∞∑
p=0

hmp

∫ τ

0

e−λm(τ−t)fj−2,p(t)dt

(A.12)

Therefore, the system of PDEs in (A.8) can be reduced to the system of ODEs in

equation (11).

The results about cumulants follow from the relation between the cumulants and

the moments of a distribution.

Benchmark Models

The performance of the Herding model is assessed empirically by comparison to bench-

mark models: the affine one-factor Heston model and the affine two-factor double

Heston model.

The closed form solution of the Heston model is used with the parameters and the

FFT implementation as suggested in Moodley (2005), including dividend payments

to model European call options:

c(St, Vt, K, τ) = Ste
−q(τ)Π1(ln(St), Vt, T,K)−Ke−r(τ)Π2(ln(St), Vt, T,K) (A.13)
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where Πj is consist the characteristic function fHeston:

Πj(ln(St), Vt, T,K) =
1

2
+

1

π

∫ ∞
0

Re

(
e−ixln(K)fj(ln(St), Vt, T, x)

ix

)
dx

fHeston(ln(St), Vt, T, x) = eC(τ,x)+D(τ,x)Vt+iuln(St)

C(τ, x) = µxiT +
1

σ2

[
(bj − ρσxi+ d)(τ)− 2ln
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1− ged(τ)
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)]
D(τ, x) =
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σ2
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)
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bj − ρσxi+ d

bj − ρσxi− d

d =
√

(ρσxi)2 − σ2(2ujxi− x2)

(A.14)

for j = 1,2 where: u1 = 0.5, u2 = −0, 5, a = κθ, b1 = κ + λ − ρσ, b2 = κ + λ.

We approximate the integral in the characteristic function by an n-point Gaussian

quadrature rule.

The Heston model is commonly applied by practitioners for its efficiency and

improved accuracy in comparison to the classic Black Scholes model.

To broaden the range of used benchmarks we also include the two factor dou-

ble Heston model developed by Christoffersen, Heston and Jacobs (2009) with the

following closed form solution:

C(St, Vt, K, τ) = StP1 −Ke−r(τ)P2,

P1 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iφln(

S(t)
K

)f(V1, V2, τ, φ+ 1)

iφ

)
dφ,

P2 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iφln(

S(t)
K

)f(V1, V2, τ, φ)

iφ

)
dφ

(A.15)

with the characteristic function being a generalisation of the characteristic func-
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tion of the Heston model:

f(V1, V2, τ, φ) = rφiτ
a1
σ2
1

(
(b1 − ρ1σ1φi+ d1)τ − 2ln

(
1− g1ed1τ

1− g1

))
+
a2
σ2
2

(
(b2 − ρ2σ2φi+ d2)τ − 2ln

(
1− g2ed2τ

1− g2

))
,

Bj(τ, φ) =
bj − ρjσjφi+ dj

σ2
j

(
1− edj(τ)

1− gjedj(τ)

)
,

gj =
bj − ρjσjφi+ dj
bj − ρjσjφi− dj

,

dj =
√

(ρjσjφi− bj)2 + σ2(φi+ φ2)

(A.16)

where

dS = rSdt+
√
V1Sdz1 +

√
V2Sdz2

dV1 = (a1 − b1V1)dt+ σ1
√
V1dz3

dV2 = (a2 − b2V2)dt+ σ2
√
V2dz4

(A.17)

where ρ1 is the correlation between z1 and z3 and ρ2 is the correlation between z2

and z4. Other combinations of z are uncorrelated.
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